3.4.63 \(\int \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} (B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [363]

3.4.63.1 Optimal result
3.4.63.2 Mathematica [C] (verified)
3.4.63.3 Rubi [A] (verified)
3.4.63.4 Maple [B] (verified)
3.4.63.5 Fricas [A] (verification not implemented)
3.4.63.6 Sympy [F(-1)]
3.4.63.7 Maxima [B] (verification not implemented)
3.4.63.8 Giac [F]
3.4.63.9 Mupad [F(-1)]

3.4.63.1 Optimal result

Integrand size = 42, antiderivative size = 117 \[ \int \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {\sqrt {a} (3 B+4 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 d}+\frac {a (3 B+4 C) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {a B \cos (c+d x) \sin (c+d x)}{2 d \sqrt {a+a \sec (c+d x)}} \]

output
1/4*(3*B+4*C)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*a^(1/2)/d+ 
1/4*a*(3*B+4*C)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/2*a*B*cos(d*x+c)*sin 
(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)
 
3.4.63.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.27 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.00 \[ \int \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {\left (C \left (\text {arctanh}\left (\sqrt {1-\sec (c+d x)}\right )+\cos (c+d x) \sqrt {1-\sec (c+d x)}\right )+2 B \operatorname {Hypergeometric2F1}\left (\frac {1}{2},3,\frac {3}{2},1-\sec (c+d x)\right ) \sqrt {1-\sec (c+d x)}\right ) \sqrt {a (1+\sec (c+d x))} \tan \left (\frac {1}{2} (c+d x)\right )}{d \sqrt {1-\sec (c+d x)}} \]

input
Integrate[Cos[c + d*x]^3*Sqrt[a + a*Sec[c + d*x]]*(B*Sec[c + d*x] + C*Sec[ 
c + d*x]^2),x]
 
output
((C*(ArcTanh[Sqrt[1 - Sec[c + d*x]]] + Cos[c + d*x]*Sqrt[1 - Sec[c + d*x]] 
) + 2*B*Hypergeometric2F1[1/2, 3, 3/2, 1 - Sec[c + d*x]]*Sqrt[1 - Sec[c + 
d*x]])*Sqrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/2])/(d*Sqrt[1 - Sec[c + d* 
x]])
 
3.4.63.3 Rubi [A] (verified)

Time = 0.68 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.93, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {3042, 4560, 3042, 4503, 3042, 4292, 3042, 4261, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a} \left (B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^3}dx\)

\(\Big \downarrow \) 4560

\(\displaystyle \int \cos ^2(c+d x) \sqrt {a \sec (c+d x)+a} (B+C \sec (c+d x))dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a} \left (B+C \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^2}dx\)

\(\Big \downarrow \) 4503

\(\displaystyle \frac {1}{4} (3 B+4 C) \int \cos (c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {a B \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} (3 B+4 C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {a B \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4292

\(\displaystyle \frac {1}{4} (3 B+4 C) \left (\frac {1}{2} \int \sqrt {\sec (c+d x) a+a}dx+\frac {a \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a B \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} (3 B+4 C) \left (\frac {1}{2} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a B \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4261

\(\displaystyle \frac {1}{4} (3 B+4 C) \left (\frac {a \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {a \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )+\frac {a B \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {1}{4} (3 B+4 C) \left (\frac {\sqrt {a} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a B \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

input
Int[Cos[c + d*x]^3*Sqrt[a + a*Sec[c + d*x]]*(B*Sec[c + d*x] + C*Sec[c + d* 
x]^2),x]
 
output
(a*B*Cos[c + d*x]*Sin[c + d*x])/(2*d*Sqrt[a + a*Sec[c + d*x]]) + ((3*B + 4 
*C)*((Sqrt[a]*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + 
 (a*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]])))/4
 

3.4.63.3.1 Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4261
Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(b/d) 
  Subst[Int[1/(a + x^2), x], x, b*(Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 4292
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a 
+ b*Csc[e + f*x]])), x] + Simp[a*((2*n + 1)/(2*b*d*n))   Int[Sqrt[a + b*Csc 
[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && 
 EqQ[a^2 - b^2, 0] && LtQ[n, -2^(-1)] && IntegerQ[2*n]
 

rule 4503
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Co 
t[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Simp 
[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n)   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[ 
e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a 
*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && LtQ[n, 0]
 

rule 4560
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_. 
)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.) 
*(x_)]*(d_.))^(n_.), x_Symbol] :> Simp[1/b^2   Int[(a + b*Csc[e + f*x])^(m 
+ 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ 
[{a, b, c, d, e, f, A, B, C, m, n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]
 
3.4.63.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(331\) vs. \(2(101)=202\).

Time = 1.45 (sec) , antiderivative size = 332, normalized size of antiderivative = 2.84

method result size
default \(\frac {\left (3 B \,\operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )+2 B \sin \left (d x +c \right ) \cos \left (d x +c \right )^{2}+4 C \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+3 B \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+3 B \cos \left (d x +c \right ) \sin \left (d x +c \right )+4 C \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+4 C \cos \left (d x +c \right ) \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{4 d \left (\cos \left (d x +c \right )+1\right )}\) \(332\)

input
int(cos(d*x+c)^3*(B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x,me 
thod=_RETURNVERBOSE)
 
output
1/4/d*(3*B*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^ 
(1/2))*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)+2*B*sin(d*x+c)*cos(d* 
x+c)^2+4*C*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+ 
c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)+3*B*(-cos(d*x+c)/(cos 
(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+ 
c)+1))^(1/2))+3*B*cos(d*x+c)*sin(d*x+c)+4*C*(-cos(d*x+c)/(cos(d*x+c)+1))^( 
1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)) 
+4*C*cos(d*x+c)*sin(d*x+c))*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)
 
3.4.63.5 Fricas [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 308, normalized size of antiderivative = 2.63 \[ \int \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\left [\frac {{\left ({\left (3 \, B + 4 \, C\right )} \cos \left (d x + c\right ) + 3 \, B + 4 \, C\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (2 \, B \cos \left (d x + c\right )^{2} + {\left (3 \, B + 4 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{8 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, -\frac {{\left ({\left (3 \, B + 4 \, C\right )} \cos \left (d x + c\right ) + 3 \, B + 4 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (2 \, B \cos \left (d x + c\right )^{2} + {\left (3 \, B + 4 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{4 \, {\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \]

input
integrate(cos(d*x+c)^3*(B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2 
),x, algorithm="fricas")
 
output
[1/8*(((3*B + 4*C)*cos(d*x + c) + 3*B + 4*C)*sqrt(-a)*log((2*a*cos(d*x + c 
)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin( 
d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(2*B*cos(d*x + c)^2 
 + (3*B + 4*C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d 
*x + c))/(d*cos(d*x + c) + d), -1/4*(((3*B + 4*C)*cos(d*x + c) + 3*B + 4*C 
)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqr 
t(a)*sin(d*x + c))) - (2*B*cos(d*x + c)^2 + (3*B + 4*C)*cos(d*x + c))*sqrt 
((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d)]
 
3.4.63.6 Sympy [F(-1)]

Timed out. \[ \int \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**3*(B*sec(d*x+c)+C*sec(d*x+c)**2)*(a+a*sec(d*x+c))**( 
1/2),x)
 
output
Timed out
 
3.4.63.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1851 vs. \(2 (101) = 202\).

Time = 0.55 (sec) , antiderivative size = 1851, normalized size of antiderivative = 15.82 \[ \int \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Too large to display} \]

input
integrate(cos(d*x+c)^3*(B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2 
),x, algorithm="maxima")
 
output
1/16*((2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1 
)^(1/4)*((cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(2*d*x + 
 2*c) - (cos(2*d*x + 2*c) - 2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x 
 + 2*c))) + sin(2*d*x + 2*c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x 
+ 2*c) + 1)) + ((cos(2*d*x + 2*c) - 2)*cos(1/2*arctan2(sin(2*d*x + 2*c), c 
os(2*d*x + 2*c))) + sin(2*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos 
(2*d*x + 2*c))) - cos(2*d*x + 2*c) + 2)*sin(1/2*arctan2(sin(2*d*x + 2*c), 
cos(2*d*x + 2*c) + 1)))*sqrt(a) + 3*sqrt(a)*(arctan2((cos(2*d*x + 2*c)^2 + 
 sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2 
*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d* 
x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))* 
sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 
 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin 
(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), co 
s(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1) 
)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) + 1) - arctan2((co 
s(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos 
(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d* 
x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2 
*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))...
 
3.4.63.8 Giac [F]

\[ \int \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} \sqrt {a \sec \left (d x + c\right ) + a} \cos \left (d x + c\right )^{3} \,d x } \]

input
integrate(cos(d*x+c)^3*(B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2 
),x, algorithm="giac")
 
output
sage0*x
 
3.4.63.9 Mupad [F(-1)]

Timed out. \[ \int \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int {\cos \left (c+d\,x\right )}^3\,\left (\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}} \,d x \]

input
int(cos(c + d*x)^3*(B/cos(c + d*x) + C/cos(c + d*x)^2)*(a + a/cos(c + d*x) 
)^(1/2),x)
 
output
int(cos(c + d*x)^3*(B/cos(c + d*x) + C/cos(c + d*x)^2)*(a + a/cos(c + d*x) 
)^(1/2), x)